Corning® ClearCurve® XB Optical Fiber

Product Information

CORNING

How to Order
Contact your sales

representative, or call

the Optical Fiber Customer Service Department:

Email: cofic@corning.com

Please specify the fiber type,

attenuation, and quantity

when ordering.

Ph: 1-607-248-2000 (U.S. and Canada)

+44-1244-525-320 (Europe)

Corning® ClearCurve® XB optical fiber is a full-spectrum fiber with enhanced macrobend performance compared to legacy single-mode fibers. ClearCurve XB fiber exceeds the ITU-T Recommendation G.657.A1 and remains fully compliant with ITU-T Recommendation G.652.D. ClearCurve XB fiber is compatible with the installed base of SMF-28e®and SMF-28e+® fibers.

Optical Specifications

Maximum Attenuation

Wavelength	Maximum Value*
(nm)	(dB/km)
1310	≤ 0.35
1383**	≤ 0.35
1490	≤ 0.24
1550	≤ 0.20
1625	≤ 0.23

^{*} Alternate attenuation offerings available upon request.

Attenuation vs. Wavelength

Range	Ref. λ	Max. α Difference
(nm)	(nm)	(dB/km)
1285 – 1330	1310	0.03
1525 – 1575	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α .

Macrobend Loss

Number	Wavelength	Induced
of	(nm)	Attenuation*
Turns		(dB)
1	1550	≤ 0.50
1	1625	≤ 1.5
	of	of (nm) Turns 1 1550

^{*}The induced attenuation due to fiber wrapped around a mandrel of a specified diameter.

Point Discontinuity

Wavelength	Point Discontinuity
(nm)	(dB)
1310	≤ 0.05
1550	≤ 0.05

Cable Cutoff Wavelength (λ_{cc})

 $\lambda_{cc} \leq 1260 \text{ nm}$

Mode-Field Diameter

Wavelength	MFD
(nm)	(µm)
1310	8.6 ± 0.4
1550	9.8 ± 0.5

Dispersion

Wavelength	Dispersion Value
(nm)	[ps/(nm·km)]
1550	≤ 18.0
1625	≤ 22.0

Zero Dispersion Wavelength (λ_0): 1304 nm $\leq \lambda_0 \leq$ 1324 nm Zero Dispersion Slope (S_0): ≤ 0.089 ps/(nm²•km)

Polarization Mode Dispersion (PMD)

	Value (ps/√km)
PMD Link Design Value	≤ 0.06*
Maximum Individual Fiber PMD	≤ 0.1

*Complies with IEC 60794-3: 2001, Section 5.5, Method 1, (m = 20, Q = 0.01%), September 2001.

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as PMDo). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

^{**} Attenuation values at this wavelength represent post-hydrogen aging performance.

Dimensional Specifications

Glass Geometry

Fiber Curl	≥ 4.0 m radius of curvature
Cladding Diameter	125.0 ± 0.7 μm
Core-Clad Concentricity	≤ 0.5 µm
Cladding Non-Circularity	≤ 0.7%

Coating Geometry

Coating Diameter	242 ± 5 μм
Coating-Cladding Concentricity	< 12 µM

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation 1310 nm, 1550 nm, and 1625 nm (dB/km)
Temperature Dependence	-60°C to +85°C*	≤ 0.05
Temperature Humidity Cycling	-10°C to +85°C up to 98% RH	≤ 0.05
Water Immersion	23°C ± 2°C	≤ 0.05
Dry Heat Soak	85°C ± 2°C	≤ 0.05
Damp Heat	85°C at 85% RH	≤ 0.05

^{*}Reference temperature = +23°C

Operating Temperature Range: -60°C to +85°C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress ≥ 100 kpsi (0.69 GPa).*

Length

Fiber lengths available up to 50.4 km/spool.

Performance Characterizations

Characterized parameters are typical values.

Numerical Aperture	1310 nm: 0.14
Effective Group Index of Refraction (N _{eff})	1310 nm: 1.4679 1550 nm: 1.4684
	1330 (1)(1): 1.4084
Fatigue Resistance Parameter (N _d)	20
Coating Strip Force	Dry: 0.6 lbs. (3N)
Rayleigh Backscatter Coefficient (for 1 ns	1310 nm: -77 dB
Pulse Width)	1550 nm: -82 dB

^{*}Higher proof test levels available.